30 research outputs found

    Single-image example-based super-resolution using Markov random fields

    Get PDF

    Neighbourhood-consensus message passing and its potentials in image processing applications

    Get PDF
    In this paper, a novel algorithm for inference in Markov Random Fields (MRFs) is presented. Its goal is to find approximate maximum a posteriori estimates in a simple manner by combining neighbourhood influence of iterated conditional modes (ICM) and message passing of loopy belief propagation (LBP). We call the proposed method neighbourhood-consensus message passing because a single joint message is sent from the specified neighbourhood to the central node. The message, as a function of beliefs, represents the agreement of all nodes within the neighbourhood regarding the labels of the central node. This way we are able to overcome the disadvantages of reference algorithms, ICM and LBP. On one hand, more information is propagated in comparison with ICM, while on the other hand, the huge amount of pairwise interactions is avoided in comparison with LBP by working with neighbourhoods. The idea is related to the previously developed iterated conditional expectations algorithm. Here we revisit it and redefine it in a message passing framework in a more general form. The results on three different benchmarks demonstrate that the proposed technique can perform well both for binary and multi-label MRFs without any limitations on the model definition. Furthermore, it manifests improved performance over related techniques either in terms of quality and/or speed

    Adaptive non-local means filtering of images corrupted by colored noise

    Get PDF

    Patch-based graphical models for image restoration

    Get PDF

    Single-image super-resolution using sparsity constraints and non-local similarities at multiple resolution scales

    Get PDF
    Traditional super-resolution methods produce a clean high-resolution image from several observed degraded low-resolution images following an acquisition or degradation model. Such a model describes how each output pixel is related to one or more input pixels and it is called data fidelity term in the regularization framework. Additionally, prior knowledge such as piecewise smoothness can be incorporated to improve the image restoration result. The impact of an observed pixel on the restored pixels is thus local according to the degradation model and the prior knowledge. Therefore, the traditional methods only exploit the spatial redundancy in a local neighborhood and are therefore referred to as local methods. Recently, non-local methods, which make use of similarities between image patches across the whole image, have gained popularity in image restoration in general. In super-resolution literature they are often referred to as exemplar-based methods. In this paper, we exploit the similarity of patches within the same scale (which is related to the class of non-local methods) and across different resolution scales of the same image (which is also related to the fractal-based methods). For patch fusion, we employ a kernel regression algorithm, which yields a blurry and noisy version of the desired high-resolution image. For the final reconstruction step, we develop a novel restoration algorithm. The joint deconvolution/denoising algorithm is based on the split Bregman iterations and, as prior knowledge, the algorithm exploits the sparsity of the image in the shearlet-transformed domain. Initial results indicate an improvement over both classical local and state-of-the art non-local super-resolution methods

    Spatiogram features to characterize pearls in paintings

    Get PDF
    Objective characterization of jewels in paintings, especially pearls, has been a long lasting challenge for art historians. The way an artist painted pearls reflects his ability to observing nature and his knowledge of contemporary optical theory. Moreover, the painterly execution may also be considered as an individual characteristic useful in distinguishing hands. In this work, we propose a set of image analysis techniques to analyze and measure spatial characteristics of the digital images of pearls, all relying on the so called spatiogram image representation. Our experimental results demonstrate good correlation between the new metrics and the visually observed image features, and also capture the degree of realism of the visual appearance in the painting. In that sense, these results set the basis in creating a practical tool for art historical attribution and give strong motivation for further investigations in this direction

    Digital image processing of the Ghent altarpiece : supporting the painting's study and conservation treatment

    Get PDF
    In this article, we show progress in certain image processing techniques that can support the physical restoration of the painting, its art-historical analysis, or both. We show how analysis of the crack patterns could indicate possible areas of overpaint, which may be of great value for the physical restoration campaign, after further validation. Next, we explore how digital image inpainting can serve as a simulation for the restoration of paint losses. Finally, we explore how the statistical analysis of the relatively simple and frequently recurring objects (such as pearls in this masterpiece) may characterize the consistency of the painter’s style and thereby aid both art-historical interpretation and physical restoration campaign

    Virtual restoration of the Ghent altarpiece using crack detection and inpainting

    Get PDF
    In this paper, we present a new method for virtual restoration of digitized paintings, with the special focus on the Ghent Altarpiece (1432), one of Belgium's greatest masterpieces. The goal of the work is to remove cracks from the digitized painting thereby approximating how the painting looked like before ageing for nearly 600 years and aiding art historical and palaeographical analysis. For crack detection, we employ a multiscale morphological approach, which can cope with greatly varying thickness of the cracks as well as with their varying intensities (from dark to the light ones). Due to the content of the painting (with extremely many fine details) and complex type of cracks (including inconsistent whitish clouds around them), the available inpainting methods do not provide satisfactory results on many parts of the painting. We show that patch-based methods outperform pixel-based ones, but leaving still much room for improvements in this application. We propose a new method for candidate patch selection, which can be combined with different patch-based inpainting methods to improve their performance in crack removal. The results demonstrate improved performance, with less artefacts and better preserved fine details
    corecore